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A KINETIC NETWORK MODEL FOR NONLINEAR VISCOELASTIC FLOW

PROPERTIES OF ENTANGLED MONODISPERSE POLYMERS

High polymers in concentrated solutions or in the melt
exhibit shear-rate-dependent viscosity and normal stress dif-
ferences. In transient flows upon inception of steady shear, the

stress growth function of the polymer overshoots through a maxi-

mum and then decays to the steady-state value asymptotically i
for large shear rates. However, for small shear rates, it only ;
increases monotonically to its limiting steady-state value. Upon :
cessation of steady shear, the stress relaxation function de-

creases monotonically to zero, the rate of which is higher for

larger shear rates. These rheological properties have been in-

terpreted by the shear-induced changes in the steady-state entan-

glement density in. the polymer (1).

Lodge explained the nonlinear viscoelastic flow properties

by a "rubberlike liquid" model, which however still predicted a
shear-rate-independent viscosity and primary normal stress co-
efficient. Many modified theories (3-6) have since been pro-
posed to refine this model. Most of them employ empirical ex-
pressions for the memory functions to give the rate-dependent
properties.EJIn this work, we shall propose a kinetic network model
which appears to predict the observed nonlinear viscoelastic flow
properties of entangled polymer systems.

The basic molecular mechanism of this model attributes the é
rate-dependence of viscosity and normal stress difference to the

decrease in entanglement density with increasing shear rate. 1In

a flow field, entanglements are being formed and d:i.t:engaged\\‘A
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\EAconstantly. The entanglement loss process is caused primarily

by the imposed shear and is assumed to be proportional to the

(1) i

is the rate constant,
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shear rate to a power ajg where

L ] .a
n, kZY n

E ¢ where ﬁz is the entanglement loss /rate, kl
t ; []
| Y is the shear rate, n is the fcurrent number of entanglements along

of the polymer. The entanglement creation process, driven by

t a representative chain, and“a(<l) accounts for the elastic nature
l thermal diffusion, is assumed to be independent of shear rate.$=~

In other words, !

ng = (k /2% (n - n) (2)

where ﬁc is the entanglement creation rate, kc is the rate
constant, A is a characteristic time determined by the rate of
diffusion, and is thus a function of molecular weight and
temperature, a is the elasticity parameter, and ng is the
saturation number of entanglements along a representative chain.
(no- n) is the number of vacant sites where entanglements have
been lost and can be likely regenerated.

At steady state, the creation rate equals the loss rate

(ﬁc = ﬁl) and the entanglement density stays constant. Equating

Egs. 1 and 2, we have

P =n/n, = L — (3) |
| 1+ (kg/k) (AY) i ‘
Eq. 3 describes the probability for entanglements to exist at 3-?'3-‘5
£ SR |
different shear rates. The viscous drag from the entanglements O
is believed to be the major source of contribution to polymer st
viscosity (1). Therefore, to a good approximation, the reduced ‘JY&&S
sy - of_SPECIAL




viscosity as a function of shear rate is also given by

néy) . 1 (4)
"o 1+(ky/k) (AN)®

where ﬂo is the zero-shear-rate viscosity of the polymeric fluid.

The normal stresses come from the elastic energy stored in
the system, and are primarily sustained by pairs of entanglements,
because the elastic deformation energy can be trapped in between
these slowly moving points. The primary normal stress difference
should thus be proportional to the square of the probability for
individual entanglements to remain under the flow situation, which
in turn corresponds to the probability for pairs of entanglcments
to exist simultaneously. In other words,

" 2
T, 0Y) - T,.{Y) = -8 Lo )
11 22 (1+(kl/kc)(lY)a (5)

where 6 is a proportionality constant which determines the
value of primary normal stress difference. The reduced
viscosity and primary normal stress difference as functions of
shear rate calculated by Egqs. 4 and 5 for a equals to 0.85 is
given in Fig. 1. The curves show qualitatively the expected
trend.

Under transient flow conditions, such as inception and
cessation of steady shear, the entanglement probability P becomes
a function of time which also has some parametric dependence on
shear rate. It can still be calculated by the following dif-
ferential equation governing the relationship between the change

of entanglements to the two competing rate processes, i.e.,




n=n_-n, (6)

B il "m '

where n is the rate of change of entanglements. Inserting the
expressions for entanglement creation and loss rates, Eq. 6 can
be integrated to give for start-up experiments.

.a
eyt

P(tivy) = B (Y)) + (1 - p (v ))exp( ) (7)

1 - p (v,)
where P,(;O) is the steady-state entanglement probability; and

for stress relaxation experiments.
. L] kc
P(tiv,) =1 - (1 - P (v ))exp(- a t) (8)

where Pw(Q) is again the steady-state entanglement probability,
in this case, before the flow is stopped.

Polymer network possesses certain elastic characteristics.
When it is suddenly deformed upon the inception of steady shear,
the shear stress born by an average entanglement first increases
with time rapidly and then gradually levels off towards the
steady-state value. A Maxwellian model is assumed to

represent this behavior, i.e.,

o (tiv,)
—— =1 - exp{~ t/1) (9)
Op(Yy)
where o(t;yo) and ow(§°) are the current average stress and

the final steady-state stress carried by individual entanglements
respectively, and 7 is the system time constant. The macro-

scopic stress exerted by the fluid is given by the product of

the average microstress supported by a remaining entanglement

and the number of such stress-bearing entanglements. The
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normalized shear stress growth functions thus calculated are pre-
sented in Fig. 2. The curves qualitatively reproduce the
expected behavior. Quantitative comparison of this theory with
experimental data is now being investigated, the results of

which will be reported in forthcoming publications.
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CAPTIONS

1. Theoretical curves of log reduced viscosity and primary

{ normal stress difference vs log reduced shear rate, where A

: is the characteristic time, and a is the elasticity parameter.
(The ratio kz/kc is taken as 1, and a = 0.85)

2. Normalized stress growth function for three different
shear rates calculated by the theory. The parameters used

are a = 0.85, k, = 0.3, k,/k.A* = 1, © = 0.5.
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